

Imaging performance of Quantitative Transmission ultrasound tomography: preliminary results towards establishing industry consensus standards

INTRODUCTION

Abstract: Quantitative Transmission (QT) Ultrasound is an FDA approved breast imaging modality, but no industry standard exists for evaluating its imaging performance. As a model for future standards and regulatory guidance, we have comprehensively characterized the performance of our latest 3D QT

Spatial Resolution Transmission Reflection 35 (dB)30 25-

RESULTS

RESULTS

Uniformity

Speed of Sound Uniformity Overall uniformity mean > 99%

SPIE.

Overall Speed Measurement

Accuracy: 0.17%

Ultrasound scanner — including spatial resolution, contrast to noise ratio (CNR), linear measurement accuracy, and image uniformity — for both transmission and reflection imaging.

METHODS

Fig. 1: 3D CAD rendering of the QT Scanner 2000

Transmission mode Phantom/breas transmitter

Fig. 2: Schematic of the QT Scanner 2000 scan head

Fig. 3: Point spread function across urethane-agar interface

Spatial Resolution (FWHM) X & Y: 1.49 ± 0.07 mm Z: 2.35 ± 0.11 mm

Contrast to Noise Ratio

CNR (Transmission) 20 mm: 17.4 ± 0.06 dB 10 mm: 17.3 ± 0.10 dB 5 mm: 17.4 ± 0.04 dB 1.4 mm: 15.6 ± 0.26 dB

CNR (Reflectance) 2 mm: 33.5 ± 0.6 dB 0.8 mm: 32.6 ± 0.9 dB 0.55 mm: 32.5 ± 0.5 dB

Distance (mm) Fig. 4: Point spread function across 100-µm-diameter glass beads

Spatial Resolution (FWHM) X & Y: 0.96 ± 0.11 mm Z: 3.19 ± 0.32 mm

Reflection

Fig. 8: Coronal speed of sound image of uniform phantom

Clinical Images

Transmission

Fig. 9: Coronal speed of sound image of a whole breast, showing brighter fibroglandular tissue embedded in darker fat tissue

Precision: 0.16%

Fig. 10: Corresponding coronal reflection image

System [1]:

- Transmitter and 2048-element receiver array (8 rows x 256 columns of 2.5 mm x 0.5 mm-sized elements) for transmission imaging
- 3 transducers (short, medium, and long-range foci) for reflection imaging
- Housing rotates 360° within water bath, automatically stepping to scan full imaging volume
- Fully 3D data acquisition and image reconstruction

Phantom Measurements [2]:

- Imaged custom phantoms to quantify performance
- Spatial resolution: cylindrical agar phantoms with embedded urethane cylinder or glass beads
- CNR & linear measurement accuracy: Transmission: cylindrical urethane phantoms with

0.3 mm: 31.5 ± 0.5 dB 0.2 mm: 25.1 ± 0.4 dB 0.1 mm: 23.1 ± 0.2 dB

Fig. 5: QT reflection image of CNR phantom with glass beads of various sizes marked as groups

Transmission

Fig. 6: Coronal speed of sound image of cylindrical phantom with three 1.4-mm-diameter rods

Linear Measurement Accuracy Coronal: 0.96% Axial: 1.18%

Reflection

Fig. 7: Coronal reflectance image of linear accuracy phantom with 0.7-mm-diameter glass beads

Linear Measurement Accuracy Coronal: 0.55%

Fig. 12: (a) Zoom-in-view of speed of sound image of breast tissue, where white squares mark fat, black squares mark glandular tissue, and black arrows mark ducts. (b) Reflection image showing delineation of interfaces, including multiple skin layers and Cooper's ligaments.

CONCLUSIONS

- We have characterized the imaging performance of the QT Scanner 2000.
- Our comprehensive evaluation provides an excellent basis for future regulatory guidance and industry consensus standards.
- Our clinical images demonstrate the utility of the scanner for research and clinical breast imaging

three 1.4, 5, 10, or 20-mm-diameter rods Reflection: 2-layer agar phantom with glass beads

Uniformity: stack of cylinders with different speeds

Fully 3D speed, attenuation, and reflection maps

Sagittal: 1.20%

Axial: 0.59%

Sagittal: 1.07%

applications.

REFERENCES

1. M.W. Lenox, et al., Int J Biomed Imaging, 2015, pp. 454028 2. J.W. Wiskin, et al., IEEE Trans Ultrason Ferroelectr Freq Control, 2017, pp. 1161

The QT Scanner 2000 provides high-resolution,

high-fidelity, multimodality breast imaging that can

identify breast anatomy

© Copyright 2018 QT Ultrasound Labs